Recrean un agujero gusano con una computadora cuántica, un paso para entender el universo

Sociedad 01 de diciembre de 2022
DE3FD8BE-D042-43B8-A996-76AD728DB966

En nuestro universo no se ha detectado ninguna de estas estructuras predichas por Albert Einstein y Nathan Rosen en 1935, pero científicos de Estados Unidos han conseguido realizar una primera “simulación” de un agujero de gusano gravitacional, aunque sin romper el espacio-tiempo. Para ello han utilizado un prototipo de ordenador cuántico.

El hito se publica este miércoles en la revista Nature. La demostración ha sido realizada usando el procesador Google Sycamore y sus autores celebran este paso hacia la posibilidad de estudiar la gravedad cuántica en el laboratorio. Su trabajo explora la equivalencia de los agujeros de gusano con el teletransporte cuántico, indagando en la idea de que la información que viaja de un punto del espacio a otro puede describirse tanto en el lenguaje de la gravedad (los agujeros de gusano) como en el de la física cuántica (el entrelazamiento cuántico). 

Para entender bien esto conviene recordar, como hacen los investigadores en una nota de prensa, que la teoría de la relatividad general –la de Albert Einstein– describe el mundo físico a altas energías o densidades de materia, por ejemplo, en objetos astrofísicos; mientras que la mecánica cuántica –la de Max Planck– describe la materia a escala atómica y subatómica. Sin embargo, la relatividad general y la mecánica cuántica son fundamentalmente incompatibles, por lo que no hay consenso sobre una teoría de la gravedad cuántica.

La teoría de la gravedad cuántica es un enfoque que reconciliaría ambas perspectivas: describiría ciertos objetos físicos en los que las dos visiones –la de Einstein y la de Planck– son relevantes. Esos objetos son los agujeros negros, cuerpos cósmicos con masas descomunales con una elevadísima fuerza de gravedad, tanta que atrapan incluso los fotones que componen la luz.

Agujeros negros y agujeros de gusano
“Todo agujero negro tiene una región interior, de la que nada puede escapar, y una región exterior, de la que aún es posible escapar. Las dos regiones están delimitadas por una superficie llamada horizonte de sucesos. Lo que Einstein y Rosen observaron es que, en una teorización matemática de un agujero negro, en realidad no hay una región exterior, sino dos, y están conectadas a través de una especie de agujero de gusano que ahora se conoce como puente Einstein-Rosen”, señalan Adam R. Brown y Leonard Susskind (del Instituto de Física Teórica de Stanford), en un comentario al artículo de Nature.

La idea de llamar 'agujero de gusano' al puente Einstein-Rosen se le ocurrió en 1957 al físico estadonunidense John Wheeler, quien usó la analogía de un gusano perforando una manzana para llegar más rápido de un punto a otro de la fruta.

En 2013, Susskind y el físico argentino Juan Martín Maldacena fueron los primeros en especular que los agujeros de gusano y el entrelazamiento eran, de alguna forma, equivalentes, estableciendo un nuevo puente entre las (aún) irreconciliables mecánica cuántica y teoría de la relatividad general.

A esta descripción hay que sumar una propiedad cuántica que Einstein consideraba una “inquietante acción a distancia”, el llamado entrelazamiento cuántico. Se trata de una propiedad de los sistemas cuánticos que les permite estar vinculados, incluso cuando están separados por distancias extremadamente largas.

B9CD8DCC-DBC9-4A14-A24A-8B59EEBBBFD2

Las dos regiones exteriores del agujero negro, explican Brown y Susskind, están conectadas por una enorme cantidad de entrelazamiento cuántico, y la incapacidad de viajar de una región exterior a otra se entiende que es “holográficamente dual a la incapacidad de utilizar el entrelazamiento para enviar mensajes más rápidos que la velocidad de la luz”.

Lo que han hecho los investigadores es aplicar el llamado ‘principio holográfico’, una idea que reconcilia dos teorías (de ahí lo de ‘dual’). Este principio sostiene que lo que sucede en un espacio tridimensional –como nuestro universo– puede conocerse estudiando solamente lo que ocurre en sus límites. Algo así como inferir lo que sucede dentro de una habitación por aquello que percibimos en sus paredes (o como si la habitación-universo no fuese más que el holograma de sus paredes)

El principio de dualidad holográfica serviría así para reconciliar la mecánica cuántica y la relatividad general, explicando las propiedades de la física relativista –las paredes– como surgidas de la física cuántica –lo que sucede dentro de la habitación–.

Siguiendo este principio, los investigadores han diseñado un sistema cuántico sencillo para simular un agujero de gusano holográfico, en el que sus propiedades coinciden con las esperadas en un agujero de gusano gravitacional y, ojo, transitable. Se trata, pues, de establecer una equivalencia analógica entre el universo descrito por la física cuántica y el que describe la física clásica.

Te puede interesar
Lo más visto